Learning Constraints via Demonstration for Safe Planning”

Ugur Kuter’ and Geoffrey Levine’ and Derek Green® and Anton Rebguns®

Diana Spears’ and Gerald DeJong?
TUniversity of Maryland, Institute for Advanced Computer Studies, College Park, MD 20742, USA
#University of Illinois at Urbana-Champaign, Department of Computer Science, Urbana, IL 61801, USA

$University of Wyoming, Computer Science Department, Laramie, WY 82071, USA

Abstract

A key challenge of automated planning, including “safe plan-
ning,” is the requirement of a domain expert to provide the
background knowledge, including some set of safety con-
straints. To alleviate the infeasibility of acquiring complete
and correct knowledge from human experts in many complex,
real-world domains, this paper investigates a technique for
automated extraction of safety constraints by observing a user
demonstration trace. In particular, we describe a new frame-
work based on maximum likelihood learning for generating
constraints on the concepts and properties in a domain ontol-
ogy for a planning domain. Then, we describe a generaliza-
tion of this framework that involves Bayesian learning of such
constraints. To illustrate the advantages of our framework, we
provide and discuss examples on a real test application for
Airspace Control Order (ACO) planning, a benchmark appli-
cation in the DARPA Integrated Learning Program.

Introduction

Great strides have been made recently in automated plan-
ning, most notably in techniques that use background knowl-
edge to efficiently generate plans. The effectiveness of these
advances has been demonstrated in international planning
competitions (Fox & Long 2002; Bacchus 2000), as well
as partially in some real-world applications such as railroad
management systems (Cimatti e al. 1997), autonomous
navigation and space applications (Aiello et al. 2001;
Bernard et al. 1998; Ai-Chang ef al. 2003), and rescue &
evacuation operations (Ferguson & Allen 1998).

Along with these successes, there has been a growing
recognition that sophisticated, multi-planner systems are
needed for full automation in real-world applications in-
volving complex, uncertain, and time-directed situations. In
those situations, extensive planning knowledge is required
but is difficult to obtain. This is partly because of the com-
plexities in the environments, e.g., rescue and evacuation op-
erations, and it is partly because there is often no expert to
provide it, e.g., space operations. In such complex domains,
a planning system that can learn such knowledge to develop
ways on how to safely and correctly operate in the world
holds great promise for success.

* Author contact emails: ukuter@cs.umd.edu, levine @uiuc.edu,
{derekg,anton,dspears } @cs.uwyo.edu, mrebl @uiuc.edu
Copyright (© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This paper describes a new framework for automated
learning and use of planning knowledge in the form of
“safety constraints,” in the context of a multi-planner sys-
tem. In particular, we present the following:

e A framework called ConstraintLearner (CL), which
learns safety constraints from a “demonstration trace” that
contains a sequence of actions and/or decisions taken by
an expert in solving a planning problem. The demon-
stration trace includes expert behavior, but not high-level
planning knowledge/strategies.

e A module, called SafetyChecker (SC), which is responsi-
ble for verifying the correctness of plans. SC uses the set
of learned safety constraints to evaluate correctness.

e An extension of our CL framework for Bayesian learn-
ing of safety constraints. This extension enhances CL’s
robustness and flexibility, which is needed when informa-
tion is lacking in the demonstration trace.

e A preliminary explanation-based learning approach to
further enhance the learning from sparse data by inter-
jecting causality.

e Examples that illustrate the operation and the advantages
of our framework, which has been deployed in a realistic
test application on Airspace Control Order (ACO). This
application is one of the benchmarks used in the DARPA’s
Integrated Learning Program.

Preliminary Definitions

For effective learning of safety constraints for planning, we
have developed a domain knowledge ontology, O, that speci-
fies conceptual knowledge about the underlying learning do-
main and the relationships, i.e., domain properties, between
domain concepts. More formally, a domain concept defines
a set of individuals in the world that belong together because
they share some properties and a domain property is a par-
tial function of the form C' — C’ where C and C’ are two
domain concepts in O. The domain theory, D, consists of
both O and a set of facts.

The input to CL includes an expert demonstration learn-
ing trace, which consists of a sequence of actions taken by a
domain expert. The output is a set of safety constraints.

Let C be a set of concepts from a domain ontology, let
P be a set of properties from that ontology such that every
property p € P has a concept from C' as its domain, and

Procedure ConstraintLearner(D, T, C, P)
1. initialize the lower and upper bounds given C and P, if such knowledge exists
2. loop over each demonstration d in the expert trace T
3. X — {z| zis aninstance of a concept c € C that appear in d}
4. foreachz € X do
5. let p be a property in P on z, and let p(x) be the value specified for = in d
6. if a lower bound Ib(p) has been learned before for x then
7 if p(x) < ib(p) then Ib(p) «— p(z)
8 else
9. Ib(p) < p(x)
10. if an upper bound ub(p) has been learned before for p(x) then
11 if ub(p) < p(z) then ub(p) «— p(x)
12. else
13. ub(p) — p(x)
14. return all of the lower and upper bounds learned

Figure 1: The ConstraintLearner (CL) procedure.

let T be a learning trace. We define a (safety) constraint as
a tuple of the form (c, p, lb, ub), where c is an instance of
a concept in C, p is a property in P, and [b and ub are the
lower and the upper bounds on the value of the property p
associated with the concept instance c. An example concept
might be the types of missions that a plane can be used for,
and an example property might specify the altitude of that
plane. A constraint database Y is a finite set of constraints.

A constraint database is admissible for the learning trace,
T, if for each instance ¢ € C and the property p € P
associated with ¢ that appears in 7', there is a constraint
(¢, p,lb,ub) in x such that b and ub are lower and upper
bounds on all of the possible values of p(c) in T'.

A learning problem description (or a learning problem for
short) is a tuple (D, T, C, P), where D is the background
domain theory, 7" is a learning trace, C' is a finite set of con-
cepts from O, and P is a finite set of properties on the con-
cepts from C. A solution for a learning problem is a con-
straint database that specifies an admissible constraint on
the value of each property in P associated with each instance
of a concept in C' that appears in the learning trace 7.

Learning Constraints over a Domain Ontology

In this section, we describe our framework, called Con-
straintLearner (CL), for learning a constraint database that
is admissible for a given learning problem. CL takes as in-
put a learning problem (D, T, C, P) and returns a solution
constraint database for that problem. The learning trace 7'
contains specific choices that an expert user has made on the
possible instances of a set of domain concepts and the prop-
erties on those concepts. CL notes every concept instance
from C' and property value in P for that concept instance in
the learning trace. Whenever new concept instances appear
in the trace, either new lower and upper bounds are learned
on the value of the property associated with that concept, or
previously-learned bounds are updated. A key assumption
of our algorithms is that lower and upper bounds exist for
all domain concepts and their specified properties, whether
they are previously known or not.

We now explain the learning algorithm we have imple-

mented for CL, which is a maximum likelihood algorithm.
Figure 1 shows the pseudocode. With the input described
above, CL starts by initializing the lower and upper bounds
for each concept ¢ in C and each property p in P for ¢ by
using prior bounds from the domain theory, if they exist in
D. After the initialization, learning proceeds by traversing
the entire input demonstration trace. During this traversal,
the expert trace provides new and modified lower and upper
bounds from which the CL can learn new constraints and/or
update existing ones using generalization and specialization.

In Figure 1, Lines 3—-13 perform the learning and/or up-
date steps in the algorithm. Let d be an acceptable demon-
stration in the learning trace 7. CL first generates every
instance of a concept ¢ from C that appears in the demon-
stration d. In the pseudocode in Figure 1, the set of all such
concept instances is shown as the set X . The algorithm then
checks every concept instance x in X, if it has learned a
lower and upper bound for that concept instance before. Let
p € P be a domain property for x. If there is a previously-
learned lower bound Ib(p) and if the value p(z) specified in
d is less than the previous lower bound, then the CL updates
its lower bound on x to be p(x). If p(z) is larger than [b(p),
then it continues without taking action. The update for the
upper bound ub(p) is similar.

The CL terminates after completing its examination of the
entire trace. It returns the learned constraints.

We now demonstrate the learning behavior of CL given
the portion of the user demonstration trace shown in Fig-
ure 2 for an Airspace Control Order (ACO) domain. An
ACO problem requires 4D deconfliction of a given set of
3D airspaces with associated time periods for each aircraft.
As these airspaces are created by distinct entities, they can
conflict. An ACO problem consists of making necessary ad-
justments to deconflict the airspaces.

In a learning problem, ACO domain concepts and prop-
erties include descriptions of airspaces and specifications of
the altitude and time period associated with each airspace.
For example, Figure 2 highlights two domain properties: the
minimum and maximum allowed altitudes of an airspace
identified as F4. Traversing this trace, CL learns that the
lower and upper bounds on the minimum altitude of F4 are

33 Select-Conflict

34 Get-Conflict-Details

35 Select-ACM ACM ID: F4
36 Begin-Altitude-Modification ACM ID: F4 Usage: AIRCORR

37 Set-ACM-Min-Altitude ACM ID: F4 Altitude: 34000

38 Set-ACM-Max-Altitude ACM ID: F4 Altitude: 35000

39 Commit-Altitude-Change ACM ID: F4

40 Get-Conflicts ACMREQ ID: ACMREQ1 ACMConflictList(ACMConflict("AWACS1”, “F57))
41 Select-Conflict ACM ID #1: F5 ACM ID #2: AWACS1

42 Get-Conflict-Details ACM ID #1: F5 ACM ID #2: AWACS1

43 Select-ACM ACM ID: F5

44 Begin-Altitude-Modification ACM ID: F5 Usage: AIRCORR

45 Set-ACM-Min-Altitude ACM ID: F5 Altitude: 20000

46 Set-ACM-Max-Altitude ACM ID: F5 Altitude: 25000

47 Commit-Altitude-Change ACM ID: F5

48 Get-Conflicts ACMREQ ID: ACMREQ1 ACMConflictList()

ACM ID #1: F4 ACM ID #2: AWACS1
ACM ID #1: F4 ACM ID #2: AWACS1

Figure 2: An example user demonstration trace in the
Airspace Control Order Domain.

both the same and they are 34,000 feet. Similarly, it learns
that the lower and upper bounds on the maximum altitude of
F4 are 35,000 feet. Now suppose the trace contains another
demonstration on the value of the minimum altitude of F4
to be 25,000 feet. In that case, CL updates the lower bound
for the minimum altitude of F4 to be 25,000 and does not
change the upper bound.

Using the Learned Constraints for Planning
and Plan Verification

After the constraints have been learned, they are then used
by one or more plan learners to generate constrained can-
didate partial plans. Because these candidate partial plans
have been generated by multiple independent plan learn-
ers, they may be inconsistent. Therefore, the SafetyChecker
(SC) is called to verify that the composed plan fragments
obey the learned safety constraints.

Consider the ACO domain, for example. Each planner has
the job of proposing a set of deconfliction actions (which
constitute a candidate partial plan). These actions are in-
tended to be applied to an ACO, which consists of spatio-
temporal locations of all airspaces. To verify that the can-
didate partial plan satisfies all safety constraints, the SC is
invoked. The SC applies the proposed set of actions, thereby
developing a hypothetical scenario — a modified ACO. The
SC then uses its 4D Spatio-Temporal Reasoner to verify
whether each constraint is still satisfied or not. Any vio-
lations are reported for evaluation. Violation reports include
the violated constraint, specific information about the viola-
tion, optional advice for plan repair, and the degree (sever-
ity) of violation [0.0, 1.0]. Specific information about the
violation describes which aircraft in the ACO caused the vi-
olation, e.g., fighter F4. The degree of violation is used to
rank violations, to allow planners to first concentrate prob-
lem resolution on more critical violations. It also makes it
possible to ignore less severe violations in the event that no
completely safe plan is discovered within the alloted time.

Planners use this feedback from the SC to repair and re-
plan, until a plan is found that is violation-free or has an ac-
ceptable violation level. Figure 3 shows a screen shot of our
4D Spatio-Temporal Reasoner performing safety checking.

Bayesian Constraint Learning

In many complex domains, such as Airspace Deconfliction,
the learning framework we described so far may only have

access to a limited length execution trace, but have a large
number of constraints to learn. In these cases, there will
be very few examples from which to learn constraints. For
this reason we expect that the simple maximum likelihood
approach may be overly restrictive. By extending the CL to
learn within a Bayesian framework, we may be able to more
accurately learn constraint values from few examples.

In a Bayesian framework, learning proceeds as fol-
lows. As described previously, CL is given a set of do-
main concepts C' = {cy,¢a,...}, a set of domain proper-
ties P = {p1,po, ...} on the concepts in C, and an expert
trace 7" made up of demonstrations of acceptable values
for the individual domain properties, {p,(c;),ps(c;),...}.
The goal is to learn a constraint database, x =
{(Ciapra lb(pr)v Ub(pr))v (ijpsv lb(ps)a Ub(ps))a }

In the Bayesian setting, we estimate P(x|7T'), the poste-
rior probability of y, given the observed demonstration 7.
Bayes’ rule implies that P(x|T") = P(T|x) x P(x)/P(T),
where P(T|x) represents the probability of observing trace
T given constraint database x, P(x) is the prior belief
over constraint databases from our domain theory, and
P(T) is the normalizing probability of observing trace 7T'.
Assuming that constraints corresponding to distinct con-
cepts and properties are independent, we have P(x|T) =
HcGC,pGP P((Qp, lb(p)7 ub(p))\T)

The above assumption enables us to decompose the gen-
eral problem into manageable subproblems. Consider one
such subproblem, the case of learning the constraint for
the range of altitudes associated with some airspace, w =
(¢iypry Ib(pr), ub(p,)). We learn by witnessing evidence
in the form of p,(c;), from the expert, as he/she positions
and reposition the corresponding airspace. Bayesian learn-
ing proceeds as follows. Our prior belief over the values
of Ib(p,) and ub(p,) is represented by a distribution P(w).
When we observe evidence from the expert, p,-(¢;), this dis-
tribution is updated to the posterior P(w|p.(c;)). Again, ap-
plying Bayes’ rule we have that:

P(pr(ci)|w) x P(w)
P(pr(ci))

Here, P(w) represents the prior generic distribution of
airspace min/max altitudes and P(p,.(¢;)|w) is the probabil-
ity that an airspace will be placed at a certain location given
the altitude constraint.

These values can usually be defined using reasonable as-
sumptions. For instance, in the context of our airspace de-
confliction example, P(w) can be obtained from a Gaussian
approximation of the real distribution by asking the expert
for the average, variance, and covariance of the minimum
and maximum altitudes.

P(p,(c;)|w) is the probability that an airspace will be
placed at a certain location given the altitude constraints.
There are two cases to consider. First, we must consider
when an airspace is first created. Second, we must consider
when an airspace already exists, but is moved to resolve a
conflict with another airspace. In the first case it is rea-
sonable to assume that the expert never violates safety con-
straints, and that the airspace is placed uniformly between
the minimum and maximum altitude constraint values. For

P(wlpr(ci)) =

(D

=1 (ef|Px]

FEZ2

AARE

AWACS1

O 2D Airspace Deconfliction Simulator Summary

[eatest2 jeatest2 aco: F1 does not intersect at least one FEZ

| eatest2/eatest2 aro: F4 does not INersect at least one FEZ

= | eatest2 /eatestZ.acoiFEZL is not intersected by a1 least one fighter.
| eatest2/eatest2 aco: F2 does not intersect at least one CAP.

| eanest2 jeatest2 aco::CAPL is nat intersected by at least one fighter.

LnaﬂACMRequlsls...‘ Reset Zoom H Clear Constraints| ‘

‘ Quit Show time/alt Load Modifications... ‘

[| eatest2jeatest2 aco: AWACS is not intersected by at least one aircraft
L eatestZ/eatesi2.aco;Al does notimersect at least one AWACS,

Figure 3: Visualization tool showing SafetyChecker verifying constraints.

the second case, we must consider not only the final position
of the airspace, but also how the expert moves the airspace
during deconfliction. Experts, for example, demonstrate a
preference for moving airspaces minimally far. A reason-
able assumption in the context of deconfliction is that the
expert always chooses the minimum cost deconfliction op-
eration that does not violate safety constraints. To solve such
constrained minimization problems, we plan to explore the
relevant literature in the field of operations research.

A significant benefit of the Bayesian framework is the
ease of converting to e-safe constraints. Consider the case
of the altitude upper bound, ub(p,.). Given a posterior belief
P(ub(p,)) and safety parameter ¢, the upper bound output
for use by the planners and verifier is z s.t. P(ub(p,) <
z) = e. Thus, a safety constraint ub(p,.) is output that is at
least as safe as the true unknown safety constraint with prob-
ability 1 - e. Adjusting e affects how conservative or risky
the output constraints will be. Setting e = 0 defaults to the
simple maximum likelihood learning introduced earlier.

We now demonstrate the behavior of the Bayesian learn-
ing approach for a particular airspace type with true upper
and lower altitude bounds 25000 and 40000 feet, respec-
tively. Suppose that our prior knowledge suggests that lower
and upper bounds of airspaces have means 20000 and 50000
feet, each with standard deviation 15000 feet and joint co-
variance (10000 feet)?. We observe the expert successively
allocate corresponding airspaces, detailed as follows:

| Demonstration [Altitude (p,) Value |

1 31,847
2 36,431
3 25,278
4 37,321
5 31,671
Figure 4 plots how the posterior belief over

P((¢i, pr, lb(pr), ub(p,-))|T) changes as the number of
demonstrations observed increases. Starting with a broad
Gaussian distribution, the posterior belief is updated to
eliminate all regions of the ({b(p,),ub(p;-)) space that are
inconsistent with the observed data. As more evidence is
observed without any altitudes outside of [25000, 40000],
the posterior becomes sharper about this point. We also
display the e-safe constraints based on the posterior for
several values of e.

Explanation-Based Constraint Learning

We are currently working on further generalizing our learn-
ing framework toward the acquisition of subtler functional
patterns over deconfliction decisions. Due to the paucity of
data assumed in our domains, statistical learning is inappro-
priate. Instead, we combine inductive and Bayesian learn-
ing (see above) with Explanation-Based Learning (EBL).
Although this portion of our work is not yet implemented,

Posterior

i Observed = 0

75

'3
2
ll
) 10!

n

=
[3%]

Observed = 2
1.5
muipalt maxalt
31,847 36,431
31,100 37,276
A0 30,284 38,189
50 23,189 45880

n

2

(g%

&
%1

UJ

Observed = 5

D

n

£-Safe Constraints

lf, L minall maxal
| 00 25278 37,321
4 05 25045 37,567
& A0 24,777 37,902

Ij 50 21,849 41,552
=3

x 10

4

L minalfl maxalt
00 25278 38,827
05 25,105 38,863
A0 25,084 38,983
50 23,835 40337

Figure 4: Constraint posterior belief and epsilon-safe constraints after observing 0, 2, 5, and 10 demonstrations from the expert.
Axis correspond to the minimum altitude bound (x-axis) and maximum altitude bound (y-axis).

this section outlines our approach. The EBL framework will
make use of declarative prior knowledge from an expert.
In the ACO domain we expect to exploit prior knowledge
about airspaces and their causal relationships. For example,
our prior knowledge will include the fact that each airspace
serves a purpose. The system will be provided with prior
knowledge relating airspaces to possible purposes, interac-
tions and relations among these purposes, and how func-
tional purposes are likely to influence airspaces.

Suppose, for example, that an expert moves two airspaces,
F4 and T1, but only F4 is actually in a conflict condition
(say with airspace A3). One possibility is that the expert
is adding specious complexity to his solution. But another
possibility is that the second airspace, T1, is in a kind of
virtual conflict induced by moving F4. That is, T1 is instru-
mental to the purpose of airspace F4 and must be moved to
preserve the integrity of the underlying functional relation.
If F4 is (or can be inferred to be) the loiter orbit for a protec-
tive combat air patrol or other persistent air asset, then some
other nearby airspace is likely to be the loiter orbit of the
supporting refueling tanker. When the primary airspace is
moved, its functionally derivative airspaces must be exam-
ined to insure that the functional support is intact and if not,
they must be suitably adjusted.

An EBL system will annotate airspaces with inferred
properties that are mentioned in the domain theory and prove
to be useful in explaining or justifying the experts’ deci-
sion traces. The learning problem is then reduced to esti-
mating parameters that govern the tradeoffs among prefer-
ences rather than inventing the existence of those tradeoffs.
Relatively few expert examples may be required to learn a
good balance between tanker safety and refueling effective-
ness for forward assents. Without the inferential ability to

incorporate this domain knowledge, the expert behavior may
appear artificially complex. With sufficient knowledge and
inferential capacity, the system could understand why an ex-
pert might depart from such learned tradeoffs in order, for
example, to exploit an existing defensive air patrol to aid in
protecting a newly moved tanker loiter region.

Related Work

Our general approach of learning from observing human
expert behavior can be traced at least back to the learning
apprentice paradigm. For example, Mitchell et al’s LEAP
is a system that learns to VLSI design by unobtrusively
watching a human expert solving VLSI layout problems
(Mitchell, Mahadevan, & Steinberg 1985). Similarly, in
(Shavlik 1985), Shavlik shows how the general physics prin-
ciple of Momentum Conservation can be acquired through
the explanation of a “cancelation graph” built to verify the
well-formedness of the solution to a particular physics prob-
lem worked by an expert. More recently, the apprenticeship
paradigm has been applied to learning hierarchical task net-
works (Nejati, Langley, & Konik 2006), and to learning au-
tonomous control of helicopter flight (Abbeel & Ng 2005).
Our learning framework, when seen in the context of mul-
tiple planners, may at first seem to fit into the paradigm of in-
tegrated architectures (Langley 2006). These include ACT*,
SOAR, THEO, ICARUS, PRODIGY, and many others. But
our motivation is quite different. These architectures are di-
rected toward integration in a psychologically plausible way.
The cognitive design criteria, the homogeneity of a unifying
computational mechanism, their claims of general intelli-
gence, and their sharing of common representations set them
apart from our multi-planner framework. In addition, they
explicitly eschew the concept of a single proof-of-concept

application domain that we follow.

Our research is also strongly related to prior research in
two areas: learning control rules for search/planning, and
”safe planning.” The former area has a long history, e.g.,
see (Minton & Carbonell 1987), and has more recently
evolved into the learning of constraints (Huang, Selman, &
Kautz 2000) for constraint-satisfaction planning (Kautz &
Selman 1999). The purpose of safe planning is to ensure
that plans made by agents obey safety constraints that pre-
vent them from resulting in dangerous consequences (Weld
& Etzioni 1994; Gordon 2000).

Our research is novel in two respects. First, unlike the
prior research on learning control rules and safe planning,
our work focuses on learning from observing an expert’s
behavior. For this reason, we maximize the information
from the input demonstration trace. To do this, we are em-
ploying a hybrid learning approach that combines induction,
Bayesian learning, and EBL. We are unaware of any other
approaches to learning constraints that combine all three.
The second novel aspect of our work is that we are not only
learning constraints for planning, but we are in fact learning
constraints for multiple heterogeneous planners, as well as
for a verification module. This general-purpose use of the
learned constraints further motivates our hybrid approach,
and it also motivates a future study of lazy-eager tradeoffs.
In particular, recall the e-safe aspect of constraints. The e
safety margin could be fixed at constraint learning time, or it
could vary based on run-time considerations of the planners
and the Safety Checker.

Conclusions

This paper has described a new framework for learning
safety constraints in an application domain by observing a
demonstration trace generated by a domain expert. The trace
includes information about the expert’s behavior, but it does
not include complex high-level planning knowledge. A pre-
liminary implementation of our approach in a multi-planner
learning/reasoning system developed for the DARPA Inte-
grated Learning Program demonstrated its effectiveness at
facilitating the production of safe plans. Our approach will
soon be a hybrid of three learning techniques: inductive,
Bayesian, and explanation-based. It will then be capable of
even greater exploitation of few examples.

Acknowledgments
This work is funded by the DARPA GILA Contract #
FA8650-06-C-7605. The opinions expressed in this paper
are those of authors and do not necessarily reflect the opin-
ions of the funders.

References

Abbeel, P, and Ng, A. Y. 2005. Exploration and appren-
ticeship learning in reinforcement learning. In ICML, 1-8.
Ai-Chang, M.; Bresina, J.; Charest, L.; Hsu, J.; Jonsson,
A. K.; Kanefsky, B.; Maldague, P.; Morris, P.; Rajan,
K.; and Yglesias, J. 2003. MAPGEN Planner : Mixed-
initiative activity planning for the Mars Exploration Rover
mission. In Printed Notes of ICAPS’03 System Demos.

Aiello, L. C.; Cesta, A.; Giunchiglia, E.; Pistore, M.;
and Traverso, P. 2001. Planning and verification tech-
niques for the high level programming and monitoring of
autonomous robotic devices. In Proceedings of the Euro-
pean Space Agency Workshop on On Board Autonoy. No-
ordwijk, Netherlands: ESA.

Bacchus, F. 2000. AIPS-00 planning competition. http:
//www.cs.toronto.edu/aips2000.

Bernard, D.; Gamble, E.; Rouquette, N.; Smith, B.; Tung,
Y.; Muscettola, N.; Dorias, G.; Kanefsky, B.; Kurien, J.;
Millar, W.; Nayak, P.; and Rajan, K. 1998. Remote agent
experiment. dsl technology validation report. Technical
report, NASA Ames and JPL report.

Cimatti, A.; Giunchiglia, F.; Mongardi, G.; Pietra, B.; Ro-
mano, D.; Torielli, F.; and Traverso, P. 1997. Formal
Validation & Verification of Software for Railway Con-
trol and Protection Systems: Experimental Applications
in ANSALDO. In Proc. World Congress on Railway Re-
search (WCRR’97), volume C, 467-473.

Ferguson, G., and Allen, J. 1998. TRIPS: An integrated
intelligent problem-solving assistant. In AAAI/TAAI Pro-
ceedings, 567-572.

Fox, M., and Long, D. 2002. International planning
competition. http://www.dur.ac.uk/d.p.long/
competition.html.

Gordon, D. 2000. Asimovian Adaptive Agents. JAIR
13:95-153.

Huang, Y.; Selman, B.; and Kautz, H. 2000. Learning
declarative control rules for constraint-based planning. In

Proc. 17th International Conference on Machine Learning
(ICML’00), 337-344.

Kautz, H., and Selman, B. 1999. Unifying SAT-based and
graph-based planning. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 318—
325.

Langley, P. 2006. Cognitive architectures and general in-
telligent systems. Al Mag. 27(2):33-44.

Minton, S., and Carbonell, J. 1987. Strategies for learning
search control rules: An explanation-based approach. In
Proceedings of the International Joint Conference on Arti-
ficial Intelligence (IJCAI), 228-235.

Mitchell, T. M.; Mahadevan, S.; and Steinberg, L. I. 1985.
Leap: A learning apprentice for vlsl design. In IJCAI, 573—
580.

Nejati, N.; Langley, P.; and Konik, T. 2006. Learning
hierarchical task networks by observation. In ICML, 665—
672.

Shavlik, J. W. 1985. Learning about momentum conserva-
tion. In IJCAI, 667-669.

Weld, D. S., and Etzioni, O. 1994. The first law of robotics
(a call to arms). In AAAI-94, 1042—-1047.

